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Abstract

Background: Aberrant DNA methylation may offer opportunities in revolutionizing cancer screening and diagnosis.
We sought to identify a non-invasive DNA methylation-based screening approach using cell-free DNA (cfDNA) for
early detection of hepatocellular carcinoma (HCC).

Methods: Differentially, DNA methylation blocks were determined by comparing methylation profiles of biopsy-
proven HCC, liver cirrhosis, and normal tissue samples with high throughput DNA bisulfite sequencing. A multi-layer
HCC screening model was subsequently constructed based on tissue-derived differentially methylated blocks
(DMBs). This model was tested in a cohort consisting of 120 HCC, 92 liver cirrhotic, and 290 healthy plasma samples
including 65 hepatitis B surface antigen-seropositive (HBsAg+) samples, independently validated in a cohort
consisting of 67 HCC, 111 liver cirrhotic, and 242 healthy plasma samples including 56 HBsAg+ samples.
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Results: Based on methylation profiling of tissue samples, 2321 DMBs were identified, which were subsequently
used to construct a cfDNA-based HCC screening model, achieved a sensitivity of 86% and specificity of 98% in the
training cohort and a sensitivity of 84% and specificity of 96% in the independent validation cohort. This model
obtained a sensitivity of 76% in 37 early-stage HCC (Barcelona clinical liver cancer [BCLC] stage 0-A) patients. The
screening model can effectively discriminate HCC patients from non-HCC controls, including liver cirrhotic patients,
asymptomatic HBsAg+ and healthy individuals, achieving an AUC of 0.957(95% Cl 0.939-0.975), whereas serum a-
fetoprotein (AFP) only achieved an AUC of 0.803 (95% Cl 0.758-0.847). Besides detecting patients with early-stage
HCC from non-HCC controls, this model showed high capacity for distinguishing early-stage HCC from a high risk
population (AUC=0.934; 95% Cl 0.905-0.963), also significantly outperforming AFP. Furthermore, our model also
showed superior performance in distinguishing HCC with normal AFP (< 20ng ml™") from high risk population

(AUC=0.93; 95% Cl 0.892-0.969).

Conclusions: We have developed a sensitive blood-based non-invasive HCC screening model which can effectively
distinguish early-stage HCC patients from high risk population and demonstrated its performance through an

independent validation cohort.

Trial registration: The study was approved by the ethic committee of The Second Xiangya Hospital of Central
South University (KYLL2018072) and Chongging University Cancer Hospital (2019167). The study is registered at

ClinicalTrials.gov(#NCT04383353).
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Background

Hepatocellular carcinoma (HCC), the most prevalent
form of liver cancer, is the 3rd leading cause of cancer-
related deaths worldwide [1]. The majority of HCC cases
develop progressively from chronic liver disease, primar-
ily due to hepatitis B virus/hepatitis C virus (HBV/HCV)
infection, or obesity-driven non-alcoholic fatty liver dis-
ease (NAFLD), are usually associated with advanced fi-
brosis or liver cirrhosis (LC) [2, 3]. HCC is a cancer
where early detection would make a significant differ-
ence. Early-stage patients have much-improved progno-
sis compared to advanced stage patients, due to the
relative efficacy of curative treatments (surgical resec-
tion, transplantation, or radiofrequency ablation) com-
pared with systemic therapy [4]. Currently, HCC routine
screening (every 6 months) in high risk population pri-
marily relies on the detection of serum protein marker
alpha-fetoprotein (AFP) and ultrasound imaging. Due to
the lack of adequate specificity and sensitivity, AFP is
challenged in recent studies, and no more recommended
by the European Association for the Study of the Liver
(EASL) and the American Association for the Study of
Liver Diseases (AASLD) [5-7]. Ultrasound imaging is
relatively inexpensive and a less demanding procedure
for screening, but the sensitivity of ultrasound alone in
small nodules (<2 c¢m) is only 21% [8]. Magnetic reson-
ance imaging (MRI)/ computer tomography (CT) scan
can exceed a sensitivity of 50% in early-stage subjects,
but this procedure is typically reserved for those at risk
since it is expensive and uncomfortable [8]. Other
blood-based protein biomarkers such as des-y-
carboxyprothrombin (DCP), glypican-3 (GP3), and Golgi

protein 73 (GP73) are not recommended in clinic [9—
12]. Currently, most HCC cases are detected on the
basis of clinical symptoms at advanced stage, rather than
by high-quality screening techniques. The development
of an earlier and more accurate screening assay remains
an urgent unmet clinical need.

The utilization of cancer-linked genomic and epige-
nomic alterations for diagnosis, prognosis, and personal-
ized medicine is becoming increasingly popular. Liquid
biopsy, assessing circulating tumor DNA (ctDNA) re-
leased from apoptotic or necrotic tumor cells, can be
used to interrogate the genomic and epigenomic profiles
of a tumor [6]. Many studies have shown the promising
results in ctDNA-based early cancer detection and
highlighted its potentials in revolutionizing cancer
screening and diagnosis [13, 14]. Among various tumor
types studied, screening for HCC had achived the high-
est sensitivity, possibly due to the abundant blood supply
in the liver [15]. Of all mechanisms for epigenetic alter-
ations, DNA methylation alteration is the most common
type. Comparing with genomic alterations, utilizing
DNA methylation as a screening approach offers several
advantages: [1] aberrant DNA methylation occurs when
a methyl group (CHs) is added to a cytosine base in a
cytosine—phosphate—guanine (CpG) dinucleotide, con-
trolling gene transcription and expression, suggesting
that altered DNA methylation patterns could be one of
the first detectable neoplastic changes thus reflects the
early changes in tumors [16, 17] [2]. Methylation alter-
ations are frequently found in specific genomic regions
such as CpG islands, which provides an opportunity to
analyze multiple altered sites within each targeted region
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and tremendous number of targeted regions by targeted
sequencing [17, 18]. At present, studies on utilization of
methylation alterations were often conducted in the ad-
vanced HCC populations and healthy individuals as con-
trol, limiting their widespread application as the routine
screening tool in the high-risk population including LC
patients and hepatitis B surface antigen-seropositive
(HBsAg+) individuals [19, 20]. The very few studies that
included LC patients did not cover the full spectrum of
cirrhosis (various causes and states). The performance of
assays conducted in such population would be compro-
mised in high-risk population due to the co-existence of
inflammation, cirrhosis, and/or precancerous lesions.
Therefore, it is necessary to profile healthy individuals,
LC, and HCC patients in parallel to precisely identify
early-stage HCC cases in high-risk population.

To overcome these problems, we developed and vali-
dated an HCC screening model based on cfDNA methy-
lation profiles to effectively distinguish patients with
HCC from the high risk population with chronic hepa-
titis B (CHB) or LC, as well as from the non-HCC indi-
viduals. Importantly, we compared the performance of
our HCC screening model with AFP in distinguishing
HCC patients who were AFP-normal and early-stage
HCC patients (Barcelona Clinic Liver Cancer [BCLC]
stage 0-A) from the high-risk population. We also inves-
tigated whether clinical parameters, including but not
limited to aspartate transaminase (AST), alanine trans-
aminase (ALT), and AFP values, would affect the per-
formance of the HCC screening model. Here, we
reported a multi-layer HCC screening model based on
cfDNA methylation profiles and domenstrated it could
be a reliable approach in the early dection of HCC in
clincal practice.

Methods

Study design and participants

The aims of this study are [1] marker identification
(from tissue samples) and [2] HCC screening model
construction and validation (both from plasma samples).
This study involved 187 HCC participants, and 735 par-
ticipants without HCC (203 LC patients and 532 healthy
individuals). All the participants were enrolled from De-
cember 2017 to June 2019, collected from 3 medical
centers in China (The Second Xiangya Hospital of Cen-
tral South University [#=502, the training cohort],
Hunan People’s Hospital and Chongqing University
Cancer Hospital [N=420, the validation cohort]). Inclu-
sion criteria included [1] > 18 years of age and [2] must
be treatment (surgery or chemotherapy) -naive. Patients
with intrahepatic cholangiocarcinoma including com-
bined hepatocellular-cholangiocarcinoma or other malig-
nancies were excluded. Healthy individuals were defined
as having no clinical symptoms of liver disease nor
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history of cancer at the time of enrollment. HCC and
LC tissue samples were either obtained at the time of
segmental surgical resection or at biopsy. Normal liver
tissues were obtained from liver donors who died of
non-liver related causes. We conducted the pathology
review on all of the tissue samples. All stages of HCC
patients were included with a bias toward BCLC stage B
or lower. HCC cases and healthy controls are age and
sex balanced. Tissue samples were used to screen differ-
entially DNA methylation blocks which can be used for
healthy, LC and HCC plasma sample classification. A
multi-layer HCC screening model was subsequently con-
structed based on tissue-derived differentially methylated
makers and further validated in an independent cohort.

Power analysis

The study statistical plan incorporated group sizes of
144 HCC patients, 144 LC patients, and 144 healthy
controls. It was sufficient to verify that our assay had an
expected sensitivity and specificity both at 75% with a
power of 1-f=90% and a significance level of a =0.05.
Additional HCC cases, LC, and healthy controls were in-
corporated into the study due to their availability.

DNA extraction from tissues and plasma

DNA from tumor, LC, and healthy liver tissue were ex-
tracted using the QIlAamp DNA FFPE Tissue Kit (Qia-
gen, Valencia, CA, USA). The presence of tumor cells in
HCC tissue samples and the abscence of tumor cells in
non-HCC tissue samples were confirmed by histopatho-
logical assessment prior to DNA extraction. Circulating
cfDNA was recovered from 4 to 5 ml of plasma using
the QIAamp Circulating Nucleic Acid kit (Qiagen, Val-
encia, CA, USA). DNA was quantified with the Qubit
2.0 fluorimeter (ThermoFisher Scientific, Waltham, MA,
USA). The distribution of the amount of input is shown
in Additional file 3: Fig. S1. Extracted tissue DNA and
cfDNA were stored in IDTE buffer at —20°C and -80°C,
respectively.

Marker discovery and validation

We identified the differential methylation sites using
Infinium HumanMethylation450K array data down-
loaded from The Cancer Genome Atlas (TCGA) data-
base with the Benjamini—Hochberrg-corrected false
discovery rate (FDR)<0.05. We used data from 656 nor-
mal WBC samples in the Gene Expression Omnibus
(GEO) dataset to exclude hypermethylated CpG sites in
haematopoietic lineage (>0.1). CpG sites on X or Y chro-
mosomes were removed. We identified differentially
methylated CpG sites. In addition, we included CpG
sites that are associated with common cancers in previ-
ous studies. 85,250 CpG sites were identified in the
marker discovery phase. The selected CpG sites were
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segregated into 8147 blocks (Additional file 1: Table S1)
and later validated using data from tissue samples and
plasma from healthy individuals [21].

Targeted bisulfite sequencing

Fragmented tissue DNA (peak approximately 200bp)
and cfDNA were subjected to bisulfite conversion using
EZ-96 DNA methylation-lightening MagPrep (Zymo re-
search, CA, USA). Briefly, purified DNA was treated
with sodium bisulfite. Subsequently, the converted
single-strand DNA molecules were ligated to a splinted
adapter and amplified by an uracil-tolerating DNA poly-
merase to generate whole-genome BS-seq libraries.
Custom-designed methylation profiling RNA baits were
used for target enrichment which covers the 85,250 CpG
sites and spans 1.16 mega base of the human genome.
The target libraries were subsequently quantified by
real-time PCR (Kapa Biosciences Wilmington, MA,
USA) and sequenced on NovaSeq 6000 (Illumina, San
Diego, CA, USA) with an average sequencing depth of
500X for tissue samples and 1000X for plasma samples.
The total reads number for plasma is 49.24 million on
average, given 2x150bp sequencing. The library prepar-
ation process includes five steps: DNA end-repair, Tail-
and-Tag, single-tag DNA amplification, PCR amplifica-
tion, and target enrichment.

Methylation data processing

Raw sequencing data (fastq) were first trimmed by
Trimmomatic (v.0.36) and then aligned by BWA-meth
(v.0.2.0) to the C to T- and G to A-transformed hgl9
reference genome [22]. PCR duplicate reads were identi-
fied and removed by Picard tools (v.1.138). Paired reads
were stitched together to represent the originating DNA
fragments, and those with discordant pairing, or low
mapping quality (MAPQ<60) were removed from fur-
ther analyses.

Model construction

A custom module was built to classify samples using
two layers of models: (i) three linear kernel support vec-
tor machine (SVM) models: a malignant versus healthy
model (MH model), a malignant versus benign model
(MB model), and a benign versus healthy model (BH
model). Each model searches for a hyperplane with max-
imal distances from both two pre-defined training clas-
ses. Like all linear classifiers, the decision function is
presented as f(x) = wT x+ b , where w=[ wy, wy, ...,
wi ]T is the weight vector and b represents the distance
of the hyperplane from the origin. (ii) A multinomial lo-
gistic regression model: for each sample, the output
from the MH, MB, and BH models was fed into a multi-
nomial logistic regression model to obtain a cancer/be-
nign/healthy assignment as a final prediction. Both
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layers were trained by the stochastic gradient descent
(SGD) algorithm, and the performance of the training
set was assessed by iterated 5-fold cross-validation. Dur-
ing the independent validation phase, the model with
locked parameters was applied directly to the blind sam-
ples and the clinical information was not released until
all analyses were completed.

Statistical analysis

Means and differences of the means with 95% confi-
dence interval (CI) were calculated using the Wilson's
score CL. A p value of <0.05 was considered statistically
significant. Differences between the groups were calcu-
lated using the two-tailed Student’s ¢ test, the Kruskal-
Wallis test, or the Fisher’s exact test, where appropriate.
All statistical analyses were performed with R (R version
34.0; R: The R-Project for Statistical Computing,
Vienna, Austria) using default functions and packages
“FactoMineR” (v2.4) and “factoextra” (v1.0.7). The differ-
ential methylation regions were called using the package
“limma” (v2.0), and the cut-off was set as Benjamini—
Hochberrg-corrected FDR <0.05. Linear models and em-
pirical Bayes methods were used for assessing differential
expression in microarray experiments. The first layer of
HCC screening model was constructed by applying the
package “e1071” (v1.7-9) using a linear kernel with C set
as 1. The second layer of HCC screening model was
trained with the package “nnet” (v7.3-16) using the sin-
gle layer model.

Ethics committee approval

The study was approved by the ethic committee of The
Second Xiangya Hospital of Central South University
(KYLL2018072) and Chongqing University Cancer Hos-
pital (2019167). All collection and usage of human sam-
ples and clinical data were in accordance with the
principles of the Declaration of Helsinki. Written in-
formed contents were obtained from all participants for
the use of their tissue or plasma samples.

Results

Patient characteristics

Tissue samples, obtained from 31 treatment-naive HCC
patients with various stages, 17 LC patients and 15 liver
donors were used for screening differentially DNA
methylation blocks to classify HCC patients and non-
HCC controls. The HCC screening model, comprising
differentially DNA methylation markers derived from
tissue samples, was constructed using plasma samples
obtained from 120 patients with HCC, 92 LC patients
and 290 healthy individuals, including 65 HBsAg+ indi-
viduals. This model was subsequently validated in an in-
dependent cohort consisting of 67 patients with HCC,
111 LC patients, and 242 healthy individuals, including
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56 HBsAg+ individuals. The study design was depicted
in Fig. 1. Detailed patient characteristics were summa-
rized in Table 1.

The identification of HCC markers from tissue samples

To identify markers for distinguishing HCC patients,
DNA methylation profiles of tissue sampes were com-
pared by performing capture-based targeted bisulfite se-
quencing. Collectively, 2321 differentially methylated
markers, including 2293 tumor-specific and 279 tissue-
specific markers were identified by comparing the
methylation levels of tumor tissues to plasma from
healthy individuals and normal liver tissue to plasma
from healthy individuals, respectively. Among them, 251
markers were both tissue and tumor-specific. The per-
formace of an unsupervised clustering based on 2321
markers in tissue samples achieved a sensitivity of 94%
and a specificity of 100% with an area under curve
(AUC) of 99.8% (95% CI 98.6-100%) (Additional file 3:
Fig. S2A, Additional file 2: Table S2). Of 2293 tumor-
specific markers, 2082 are hypermethylated and 211 are
hypomethylated (Additional file 3: Fig. S2B); of 279
tissue-specific markers, 158 are hypermethylated and
121 are hypomethylated (Additional file 3: Fig. S2C).
Based on GO and KEGG pathway analysis (Additional
file 3: Fig. S3), we found that tumor-specific markers
tends to enrich in cancerization-related functions while
tissue-specific markers are more abundant in categories
of development and differentiation.
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Circulating free DNA-based prediction for HCC and LC
We aimed to develop an HCC screening model based on
methylation profiles obtained from cfDNA to distinguish
patients with HCC from LC patients and healthy indi-
viduals. An unsupervised clustering was performed to
visualize the methylation profiles of the plasma samples
from training cohort for the tissue-derived 2321 markers
(Additional file 3: Fig. S4). Although the methylation sig-
nals were less distinct in plasma samples due to the low
tumor shedding in early-stage HCC, an increase in
methylation intensity was observed from healthy individ-
uals to HCC patients.

Firstly, three sub-models (MH, BH, and MB models)
were trained based on the training data for the selected
2321 differentially methylated markers. The classification
accuracies were highly consistent between the training
and single-blind validation sets in 3 sub-models, con-
firming effective modeling and minimal overfitting. The
MH model, distinguishing HCC samples from healthy
controls, achieved a sensitivity of 84% and a specificity
of 100% in the training cohort (AUC=0.992), and a sen-
sitivity of 82% and a specificity of 100% in the validation
cohort (AUC=0.984; Additional file 3: Fig. S5A-D). The
BH model, distinguishing LC samples from healthy con-
trols, had a sensitivity of 88% and specificity of 98% in
the training cohort (AUC=0.983), and a sensitivity of
66% and a specificity of 99% in the validation cohort
(AUC=0.933; Additional file 3: Fig. S6A-D). Tissue-
specific markers made significant contributions to BH
score (Additional file 3: Fig. S7) The MB model,

ELSA-seq
(85,774 CpG sites )

¥

HCC marker

HCC tissue (n=31; 19 stage 0-A, 4 stage B, 7 stage C and 7 stage D)
normal liver tissue (n=15) , liver cirrhotic tissue (n=17)

identification

2,321 differentially methylated markers

¥

¥

Training and
cross-validation

Site 1

HCC plasma (n=120), liver cirrhotic plasma (n=92),
healthy plasma (n=290) , including HBsAg+ plasma (n=65)

5-fold cross
validation

2

Single-blind Site 2

HCC plasma (n=67), liver cirrhotic plasma (n=111),
healthy plasma (n=242), including HBsAg+ plasma (n=56)

validation

Fig. 1 Workflow chart of data generation and diagnosis analysis. ELSA-seq panel 85,250 CpG sites were applied to a training cohort of 15 normal
liver tissue, 17 liver cirrhotic tissue, 31 HCC tissue (19 stage 0-A, 4 stage B, 7 stage C, and 1 stage D) to identify a final selection of 2321
differentially methylated markers. These markers were applied to a training and cross-validation cohort and also a single-blind validation cohort.
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Table 1 Patient characteristics of the study population
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HCC Cirrhosis Healthy Individuals
Training Validation P value Training Validation P value Training Validation P value
Total, n 120 67 92 m 290 242
Age, years
Mean + SD 53(24-83) 54(23-74) 0.599 48(26-81) 52(22-82) 0.005 50(21-89) 50(18-79) 0633
AFP, ng/ml*
Negative, <20 ng/ml 41 20 0.869 53 65 0617 83 63
Positive, >20 ng/ml 77 42 21 32 0 0
UNK 2 5 18 14 207 176
Gender
Male 106 55 0273 74 89 0.86 236 192 0.584
Female 14 12 17 22 54 50
UNK 1
HBV infection”
No 11 9 0461 22 9 0.003 60 54 0.896
Yes 105 57 67 98 65 56
UNK 4 1 3 4 165 132
Child-Pugh class
A 102 54 0491 14 39 0.004
B 15 9 33 37
C 1 2 44 35
UNK 2 2 1
BCLC stage
0 7 3 0.698
A 65 34
B 18 8
@ 27 18
D 3 4

*AFP was not reported by some healthy individuals; "HBV status was not reported by some healthy individuals
AFP alpha-fetorprotein, BCLC Barcelona Clinic Liver Cancer, HBV hepatitis B virus, HCC hepatocellular carcinoma, UNK unknown, SD standard deviation

distinguishing HCC samples from LC controls, had a
sensitivity of 88% and a specificity of 90% (AUC=0.968)
and yielded a sensitivity of 90% and a specificity 81% in
validation cohort (AUC=0.943; Additional file 3: Fig.
S8A-D). Subsequently, a multinomial logistic regression
model was built up using the predictive values generated
from three sub-models (MH, BH, and MB models) to
achieve the screening results for unknown samples.
Opverall, the HCC screening model yielded a sensitivity
of 86% and a specificity of 98% in the training data set
(AUC=0.98, 95% CI 0.969-0.991), and a sensitivity of
84% and a specificity of 96% in the validation data
(AUC=0.97, 95% CI 0.945-0.994; Table 2 & Additional
file 3: Fig. S9). Sensitivity improved with advancing dis-
ease stage (Table 2). Sensitivity in the training set was
79% in stage 0-A (57/72), 94% in stage B (17/18), and
97% in stage C-D (29/30) patients. Sensitivity in the

validation set was 76% in stage 0-A (28/37), 88% in stage
B (7/8), and 95% in stage C-D (21/22) patients.

Clinical significance of malignant score and benign score

To investigate the clinical significance of malignant and
benign scores, which were the outputs of our HCC
screening model, we correlated both scores with several
clinical parameters, including BCLC stage, Child-Pugh
(CP) score, and liver diseases with hepatitis B virus/
hepatitis C virus (HBV/HCV) infection. The median ma-
lignant score of HCC, cirrhosis, and healthy controls
were 5.4, -2.6, and -8.2, respectively (Fig. 2A). Our ana-
lysis showed that malignant score progressively in-
creased from stage 0 to D (p<0.01) (Fig. 2B). Benign
score, reflecting the properties of cirrhotic livers, is sig-
nificantly higher in patients with cirrhosis (p<0.01) with
a median benign score of 0.9. Healthy individuals and
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Table 2 Performance of tissue-derived markers in plasma samples (training and validation cohort)

Training cohort Predicted
Total Healthy Cirrhosis HCC Sensitivity (%) Specificity (%)
Healthy 290 284 3 3 98
Cirrhosis 92 14 72 6 93
Healthy+Cirrhosis 382 298 75 9 98
0-A 72 10 5 57 79
B 18 0 1 17 94
c-D 30 0 1 29 97
HCC 120 10 7 103 86
Validation cohort Predicted
Total Healthy Cirrhosis HCC Sensitivity (%) Specificity (%)
Healthy 242 241 0 1 100
Cirrhosis m 36 62 13 88
Healthy+Cirrhosis 353 277 62 14 9%
0-A 37 9 0 28 76
B 8 1 0 7 88
c-D 22 1 0 21 95
HCC 67 1 0 56 84

patients with HCC had a median benign score of -8.3
and -5.5, respectively (Fig. 2C). Both malignant score
(p=0.21) and benign score (p=0.14) were comparable
among patients with CP score A, B, or C, suggesting
both scores were not affected by CP scores. In patients
with HCC and non-HCC controls, HBV and HCV

infectious background did not affect malignant nor be-
nign score (Fig. 3A & Additional file 3: Fig. S10). Com-
pensated viral cirrhosis, decompensated viral cirrhosis,
and decompensated non-viral cirrhosis groups had com-
parable malignant scores (Kruskal-Wallis, p=0.16), fur-
ther suggesting that malignant score primarily reflects
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the properties of tumor. Decompensated viral cirrhosis
and decompensated non-viral cirrhosis had comparable
benign scores (p=0.34; Fig. 3B). Compensated viral cir-
rhosis had a significantly lower benign score than de-
compensated viral cirrhosis (p<0.01) and decompensated
non-viral cirrhosis (p=0.0029), suggesting that benign
score primarily reflects the properties of cirrhosis.

Performance of the HCC screening model and AFP
Currently, serum AFP levels, as the only blood-based
biomarker for HCC screening, suffers from low accur-
acy, which severely limits its clinical utility. In biopsy-
proven HCC patients, the malignant score demonstrated
superior accuracy than AFP (cutoff of 20 ng ml™) in dif-
ferentiating HCC patients from non-cancerous individ-
uals (AUC 0.957 versus 0.803, Fig. 4A, B). We further
compared the performance of these two predictors in
109 early-stage HCC (BCLC stage 0-A) patients. The
HCC screening model significantly outperformed than
AFP in distinguishing early-stage HCC patients from
non-HCC individuals (AUC 0.936 versus 0.764, Fig. 4C).
Malignant score also showed a better detection perform-
ance than AFP in distinguishing early-stage HCC pa-
tients from cirrhotic patients (AUC 0.934 versus 0.719,
Fig. 4D).

In addition, we investigated the performance of our
model in a set of 61 HCC patients with normal serum

AFP (< 20ng ml™), which achieved an AUC of 0.947
(95% CI 0.905-0.963) in differentiating HCC patients
with normal AFP from non-HCC individuals. In con-
trast, AFP only exhibited an AUC of 0.579 (95% CI
0.491-0.667; Fig. 4E) in the same setting. Our model
also showed an AUC of 0.930 (95% CI 0.892-0.969) in
differentiating HCC patients with normal serum AFP
from cirrhotic patients; while AFP had an AUC of 0.617
(95% CI 0.533-0.701; Fig. 4F). Addition of AFP did not
statistically improve the overall accuracy of the malig-
nant score (Fig. 4A-F). Collectively, these results re-
vealed that the advantage of malignant score was over
AFP in differentiation of the early-stage HCC among the
average-risk population and high-risk population.

Clinical characteristics of false positive and false negative
samples

To evaluate the clinical characteristics of mis-classified
samples, we compared the clinical parameters of 19 false
positive cases (cirrhotic samples classified as HCC cases;
6 from training cohort and 13 from validation cohort)
and 183 true negative cases (cirrhotic samples classified
as non-HCC cases). Our analysis revealed that age, bili-
rubin level, and Child-Pugh score were significantly dif-
ferent between 19 false positive and 183 true negative
samples (Fig. 5A-C). The misclassified patients were
older (Wilcoxon, p=0.013) with lower bilirubin levels
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(Wilcoxon, p=0.01) than true negatives. The distribution
of CP scores in misclassified patients was also
significantly lower than true nagetives (Fisher’s exact
test, p=0.002). The rest investigated clinical parameters
were comparable between the two groups, including
ALT, AST, and AFP (Additional file 3: Fig. SI11A-C). We
also compared the clinical parameters between 28 false
negative samples (HCC patients classified as non-HCC
cases; 17 from training cohort and 11 from validation
cohort) and 159 true positive samples (HCC patients
classified as HCC cases). False negative cases had a sig-
nificantly lower AFP (Wilcoxon, p=0.09) and earlier
BCLC stage than ture positive cases (Fisher’s exact test,
p<0.001; Fig. 5D, E). The rest clinical parameters were
comparable, including age and bilirubin level (Additional
file 3: Fig. S11D-E).

Discussion

Early detection is the most effective way to reduce HCC
mortality. In this study, we sought to develop and valid-
ate a cfDNA-based multi-layer HCC screening model for
the early detection of HCC from patients with liver dis-
ease and healthy controls using targeted bisulfite se-
quencing, a highly sensitive DNA methylation profiling
technique based on NGS. A total of 2321 differentially
methylated markers were identified by comparing the
methylation profiles obtained from HCC, normal, and
LC tissue samples. Our model yielded significantly im-
proved performance over serum AFP testing for early-
stage HCC versus non-HCC controls, and of the most
significant clinical importance, early-stage HCC versus
high-risk patients with non-malignant liver disease in-
cluding LC and HBV infection. Importantly, our model
also showed superior performance over AFP by accur-
ately detecting those HCC cases that would have failed
to be detected by AFP testing alone. This multi-layer
model based on the 2 intermediate outputs, tumor, and
benign scores, which primarily reflected the properties
of tumors and cirrhosis, achieved differential diagnosis
for HCC cases. Taken together, this study suggested that
our model had the potentials of becoming an integrated
part of HCC surveilance, for early screening of HCC pa-
tients from high risk subjects.

Identifying biomarkers for early cancer detection with
minimal invasiveness is still an emerging field. Numer-
ous studies have explored the feasibility of ctDNA-based
somatic mutation profiles and concluded such technique
may not be adequate [23-25]. A tumor cell usually har-
bors only one copy of mutant DNA. A major challenge
associated with utilizing somatic mutation obtained from
ctDNA for cancer detection is that an early-stage tumor
may not be able release enough copies of the mutant
DNA. The TRACERx study revealed that only 13% of
stage I lung adenocarcinoma patients had detectable
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mutations [26]. In a large-scale prospective study, only
27% of early-stage patients were detected by assessing
mutations and protein levels in blood testing [27].

Methylation profiling of ctDNA has shown great po-
tential to overcome the limited amount of ctDNA in cir-
culation and the lack of recurrent mutations. DNA
methylation alterations occur very early in tumorigen-
esis, even prior to the emergence of somatic mutation,
and also offer an opportunity to identify the early stage
cancer before clinical symptoms emerged [16, 28]. Many
promising HCC methylation-based screening models
have been proposed. Liu et al. reported the study of
targeted methylation analysis of circulating cfDNA
screening test for over 50 cancer types across stages sup-
ported by GRAIL, Inc. [29] 25 patients with stage I-III
hepatobiliary cancer were included, demonstrating a
sensitivity of 68% at 99% specificity. Kisiel et al. pro-
posed a panel of 6 methylated DNA markers based on
differentially expressed genes derived from HCC and
control tissues, which achived a sensitivity of 95% and a
specificity of 92% when stage [-IV HCC case were de-
tected in high-risk population. Importantly, this panel
detected 3/4 stage 0, 39/42 stage A HCC cases [30]. In
addition, Xu et al. compared differential DNA methyla-
tion profiles of HCC tissues and blood leukocytes to de-
rive 401 candidate markers which were further refined
to a panel of 10 markers for the construction of the
diagnostic model, yielding a sensitivity of 83.3% and spe-
cificity of 90.5% in the validation cohort (stage I-IV
HCC cases) [13]. Cai et al. presented a genome-wide 5-
hydroxymethylcytosines (5hmC)-based screening model
that distinguished early-stage HCC cases (stage 0-A)
from the high-risk population, achieving an AUC of
0.884 in the external validation cohort [31]. In addition,
DNA methylation alterations could be inflenced by
many biological factors, and pre-specified case—control
studies may not reflect the full spectrum of the disease
owing to selection bias. Carefully well designed studies
in the intended use screening population are still re-
quired to evaluate the clinical applicability of these
studies.

An effective screening assay needs to demonstrate suf-
ficiently high specificity to minimize the risk of overdiag-
nosis (false positive rate) and to avoid unnecessary
anxiety and the follow-up examinations of the non-HCC
individuals [32]. Our model have achived high
specificities and yeilded 19 false positive samples in both
training and validation cohorts. It is possible that these
signals were detected from some tumor lesions which
were missed by CT-scan screening. These misclassified
patients were often senior adults with lower bilirubin
levels. We are tracking these false positive individuals to
determine whether they have an increased risk of
developing HCC.
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Despite the significance of our screening model, sev-
eral limitations might impede the interpretation of our
results. Firstly, only cirrhotic patients were included as
benign liver disease. Other non-malignant liver diseases
would be helpful to improve the model for achieving the
most optimal performance. Secondly, the number of en-
rolled HCC patients in the validation cohort was rela-
tively small, especially the number of the early-stage
HCC patients. Additional 0-A stage HCC participants
would be helpful to validate the robustness of our
model. Thirdly, the LC group in the training cohort has
a median age of 47, which is lower than the healthy indi-
viduals and HCC patients. An age-matched training set
might reduce the potential selection bias. Fourly, given
the social economic effectors on the cost of the test at
ideal test frequency for intended population as frequent
as every 6 months, the current version of the test is not
cost-effective enough and might not meet the needs in
real-world clinical diagnostics from a social economics
perspective. Since methylation-based tests are capable of
detecting the cancer and locating the tissue of origin for
simultaneously, we anticipate sensitive and cost-effective
multi-cancer detection tests will benifit the general pub-
lic as the technology evovles and more clinical studies
have been carried out.

Conclusions

Collectively, our study provides evidence that cfDNA-
based DNA methylation profiling can be used as a non-
invasive screening assay for early-stage HCC in clinical
settings. We developed a highly sensitive and specific
model for HCC early screening, which can accurately
distinguish HCC patients from the high risk population
with a history of LC or CHB. A multicenter study con-
ducted in the high risk population is needed to further
define the efficiency of this model. Based on these re-
sults, a prospective Pan-CanceR Early Detectlon Pro-
jeCT (PREDICT study) has been registered in
ClinicalTrials.gov with NCT number (NCT04383353)
and is ongoing.
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